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There are several factors (the initial ski jumper’s body position and its changes at the transition to the fl ight 

phase, the magnitude and the direction of the velocity vector of the jumper’s center of mass, the magnitude of the 

aerodynamic drag and lift forces, etc.), which determine the trajectory of the jumper ski system along with the total 

distance of the jump. The objective of this paper is to bring out a method based on Pontryagin’s maximum principle, 

which allows us to obtain a solution of the optimization problem for fl ight style control with three constrained control 

variables – the angle of attack ( ), body ski angle (!), and ski opening angle (V). The fl ight distance was used as the 

optimality criterion. The borrowed regression function was taken as the source of information about the dependence 

of the drag (D) and lift (L) area on control variables with tabulated regression coeffi  cients. The trajectories of the 

reference and optimized jumps were compared with the K = 125 m jumping hill profi le in Frenštát pod Radhoštěm 

(Czech Republic) and the appropriate lengths of the jumps, aerodynamic drag and lift forces, magnitudes of the ski 

jumper system’s center of mass velocity vector and it’s vertical and horizontal components were evaluated. Admissible 

control variables were taken at each time from the bounded set to respect the realistic posture of the ski jumper system 

in fl ight. It was found that a ski jumper should, within the bounded set of admissible control variables, minimize the 

angles   and !, whereas angle V should be maximized. The length increment due to optimization is 17%. For future 

work it is necessary to determine the dependence of the aerodynamic forces acting on the ski jumper system on the 

fl ight via regression analysis of the experimental data as well as the application of the control variables related to the 

ski jumper’s mental and motor abilities.
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INTRODUCTION

Aerodynamic drag and lift forces, the initial move-

ment state of the fl ight phase of the ski jump, together 

with the gravitational force, determine the trajectory of 

the ski jumper system’s center of mass along with the 

total distance of the jump. The mentioned forces are 

substantially infl uenced by the skier’s course of posture 

(Jin, Shimizu, Watanuki, Kubota, & Kobayashi, 1995; 

Müller, Platzer, & Schmölzer, 1996; Schmölzer & 

Müller, 2002; Schmölzer & Müller, 2005; Virmavirta et 

al., 2005), the aerodynamic qualities of the ski jumper’s 

equipment (Meile et al., 2006) and his/her somatotype 

(Vaverka, 1994; Schmölzer & Müller, 2005; Müller, W., 

Gröschl, Müller, R., & Sudi, 2006). 

Computer simulations, among other things, can help 

to clarify the optimization strategy of the fl ight style. 

There is only one pattern of the optimal change in the 

angle of attack, thus aff ording maximal fl ight length 

(Remizov, 1984). To solve the optimization problem 

with one control variable, Remizov applied Pontryagin’s 

maximum principle (Pontryagin, 1962) and computa-

tions were based on data from wind tunnel experiments 

(Grozin, 1971). It was shown that the angle of attack 

should gradually increase according to a convex func-

tion. A solution of the optimization problem of the 

fl ight phase in ski jumping demands data describing 

the dependency of the aerodynamic forces on angle pa-

rameters of the fl ight style. Seo and Murakami (2003) 

took one control variable (the forward leaning angle) 

to solve the optimization problem. Their result showed 

that a jumper should keep the forward leaning angle of 

the magnitude of 6°. As a new style named the V-style 

was extended in the 1990’s, so far a suffi  cient amount of 

information about the contemporary range of the fl ight 

position and appropriate aerodynamic force acting on 

the ski jumper system and the jumper’s equipment has 

not been found. Thus, Seo, Watanabe and Murakami 

(2004) made wind tunnel experiments with full size 

models to acquire data for suffi  ciently wide ranges of 

angles of attack, body ski angles and ski opening angles. 

Seo, Murakami and Yoshida (2004) solved the optimiza-

tion problem by using two control variables: the body 

ski angle and the ski opening angle. The authors used 

data prepared by Seo, Watanabe and Murakami (2004). 
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Meile et al. (2006) investigated the aerodynamic 

behaviour of a ski jumper model in a reduced scale 

(1: 2) in a wide range of angles of attack. The experi-

mental results were in good agreement with full scale 

measurements on athletes. Murakami, Hirai, Seo and 

Ohgi (2008) derived aerodynamic forces from the data 

analysis of a high speed video image of the initial fl ight 

phase. They concluded that the aerodynamic forces, 

which were extracted from the image, were in reason-

able agreement with existing wind tunnel data for the 

cases of jumping fl ights in the quasi steady fl ight phase. 

Hermsdorf, Hildebrand, Hofmann and Müller 

(2008) introduced a biomechanical multibody model 

for simulation in ski jumping that makes possible the 

evaluation of the time course of joint angles, global posi-

tion and the orientation of the ski jumper.

The simple ski jumping model for the calculation of 

jump length was evaluated by Schindelwig and Nach-

bauer (2007). Wind velocity plays an important role 

in the agreement between the measured and calculated 

jump lengths.

The aim of this study is to bring out a method for 

obtaining a solution to the optimization problem for 

fl ight style control with three control variables (angle 

of attack, body ski angle, ski opening angle) and correc-

tion of the concrete fl ight style based on the solution of 

the optimization problem. Admissible control variables 

were taken from the bounded set to respect the realistic 

posture of the ski jumper system in fl ight. The infl uence 

of the wind was neglected.

METHODS

Formulation of the optimization problem and the method-
ology used in the numerical computation of the optimal 
fl ight style

A ski jumper controls, over time, fl ight position in 

order to maximize fl ight distance and securely fi nish 

a jump by landing and outrunning. The way to fi nd the 

optimal control of fl ight position was a matter of solving 

an optimization problem. An element of the optimiza-

tion problem formulation for a ski jumping fl ight is the 

mathematical modeling of the movement of the center 

of mass of a ski jumper system. Consider the jumper 

moving through still air on a vertical plane. For the 

simulation made here the coordinate system O
xy

 with 

the horizontal x axis oriented forward in the direction 

of the fl ight, the vertical y axis oriented downward and 

the origin blending with the center of mass of the ski 

jumper system above a ski jump edge have been used. 

A ski jumper controls body segment angles, the angle 

of attack and the ski opening angle.

A ski jumper system’s center of mass and state of 

motion are determined by the coordinates x, y and veloc-

ity vector components v
x
 and v

y
 in the coordinate system 

O
xy

. Thus, the vector of the state variables s takes form:

s = (v
x
(t), v

y
(t), x(t), y(t)).  (1)

The equation of motion ma = F
g
 + F

D
 + F

L
, where ma 

is the net force, is rearranged to obtain the components 

of the acceleration and the velocity vector

 (2)

and these equations model the state of motion 

progress in time and take into account forces acting 

on the ski jumper system in the inertial system of co-

ordinates O
xy

 – gravitation F
g
 = mg (m being the mass 

and g the gravitational acceleration), aerodynamic drag 

2 2
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(" being the air density,

 

C
D
 the drag coeffi  cient, S

f
 the frontal area, D the drag 

area, 
2 2

x yv v v# $ the magnitude of the velocity vector 

and i the unit vector in the same direction as the velocity

vector) and lift forces
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L C S v Lv" "# #F j j

(C
L
 being the lift coeffi  cient, S

p
 the planform area, L the 

lift area and j the unit vector normal to the air stream). 

Express (2) as:

% &d
,

dt
#
s

f s u . (3)

The acquired solution of the optimization problem 

has to respect the athlete’s psychological and physical 

individuality, which are exhibited in individual fl ight 

style. That is the reason why the control vector of the 

system is assumed to be constrained to belong to a sug-

gested closed and bounded set U r in r-dimensional 

space. In all steps of the algorithm consider 

0, :  r rt T U R' ( ( )u .  (4)

The fl ight time T corresponds to the time interval 

from the start of the reference jump to the instant of 

the landing of the jumper’s model at the intersection 

of the fl ight path with a smooth curve S representing 

the projection of the landing area of the ski jump on 

a vertical plane containing the coordinate system O
xy

. 

The equation of curve S is given as follows:
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% &:  , 0S x y* # . (5)

Assume for coordinates of the center of mass in the 

instant T that the following is valid:

% & % &% &, 0x T y T* # .  (6)

To solve the optimization problem, Pontryagin’s 

maximum principle has been applied. The jumper ski 

system, from the dynamics point of view, can be charac-

terised in terms of a set of fi rst order diff erential equa-

tions (2) in which control variables are to be selected 

over time to obtain some desirable objectives in an op-

timal manner. Pontryagin’s maximum principle consists 

of a set of necessary conditions, which must be satisfi ed 

by optimal solution and originate in classical calculus 

of variations (Pierre, 1969, 478). 

The functional J is to be minimized by the ap-

propriate selection of u(t)( rU  at each instant 

t( *0,T : % & % &% &*

( )
min ,
t

J F T T#
u

s u . (7)

Because the purpose is to maximize jump length, the 

functional J has the form

% &J x T# + .  (8)

To minimize J, it is necessary to formulate a Ham-

iltonian that has the following general form (Víteček, 

2002; Pierre, 1969; Lewis & Syrmos, 1995):

% & % &T, , ,H #s u p p f s u ,  (9)

where % &tp is the costate vector. On the basis of (2) is 

 (10)

where

% &% &1
2

D
K t

m

"
#u  or % &% &2

2

L
K t

m

"
#u .  (11)

According to the Pontryagin’s maximum principle, 

the costate vector p must satisfy the system of equations 

canonically conjugated to the system (2)

d

d

H

t

,
# +

,
p

s  
 (12)

and the control vector u*(t) which leads to the minimum 

of J is the vector which minimizes Hamiltonian H:

% &
% &

% &* * * * * *, , min , ,
rt U

H H
(

#
u

s u p s u p . (13)

Our conjugate system for components of the costate 

vector is obtained on the basis of the equation (10):

 (14)

A corresponding boundary condition is formed 

(Lewis & Syrmos, 1995):

 (15)

B a s e d  o n  c o m p a r i n g  ( 7 )  a n d  ( 8 )

% &% & % &F T x T# +s , so

  (16) 

Also 

  (17)

These identities (16) and (17) are substituted appro-

priately into the boundary condition (15):

  (18)

Both the fi nal state and the fi nal time T are free, 

i.e. diff erent choices of the control vector u will result 

in diff erent values for T and the fi nal state vector s(T). 

Therefore, dT - 0 and ds(T) - 0. Diff erentials dT and 

ds(T) are also independent so that (15) yields the sepa-

rate boundary conditions
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Using (16), (17) and (19) the fi nal costate vector 

we get
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(21)

and the Hamiltonian at time T becomes:

% & 0H T # . (22)

The components of the costate vector p(T) can be 

added to the condition (21) with respect to the Hamil-

tonian (10) to obtain a coeffi  cient ., thus

 (23)

A logical consequence is:

 (24)

The MATLAB® technical programming language 

has been used for the numerical solution of the optimi-

zation problem. This algorithm was turned into MAT-

LAB statements:

1. The numerical solution of the Cauchy problem 

for the four dimensional system of nonlinear diff erential 

equations (2) with the initial condition of 

% & % & % & % &% &0 x y0 , 0 , 0 , 0v v x y#s  (25)

respects a typical state of motion of the ski jumper sys-

tem’s center of mass at the start of the optimized fl ight. 

Apart from the initial condition, it is necessary to defi ne 

a reference jump by tabulated functions L = L(t) and 

D = D(t) too.

2. Assessment of the fl ight time T, for that holds 

equality (6).

3. Numerical solution of the four dimensional sys-

tem of nonlinear diff erential equations (14) with bound-

ary conditions (21) with respect to identity (24).

4. Minimize a Hamiltonian to get an optimal time 

course for the control variables that facilitate the solu-

tion of the equations of motion (2) if the regression 

dependence of quantities L and D on control variables 

is known. For this purpose, it is necessary to use data 

from wind tunnel experiments with athletes or models 

of athletes positioned in accordance with real postures. 

Optimization of the reference jump with three control 
variables

Below are the supposed aerodynamic characteristics 

of the model described by Seo, Watanabe and Muraka-

mi (2004) in the form of regression function

4 2 2 4 2 2

0 0 0 0 0 0

,  i j k i j k

ijk ijk

i j k i j k

D a V L b V !  !
# # # # # #

# #;;; ;;;  

 (26)

With the tabulated regression coeffi  cients a
ijk

 and 

b
ijk

. The control vector included three components:  , ! 

and V. The set U r contains at each time t the intervals in 

the form 0 0,   <  <+ $ , where  
0
 is a function of 

time describing the changing of the angle   in the refer-

ence fl ight (TABLE 1) and <
 
 is the maximal standard 

deviation from the fi eld studies made by Schmölzer and 

Müller (2005) – analogously for the other control vari-

ables. The values m = 65.5 kg and " = 1 kg·m–3 have been 

used for the all computer simulations. The initial state 

of motion was set to s
0
 = (25.93 m·s–1; 2.49 m·s–1; 0 m; 

0 m), because the supposed angle of the slope of the 

ramp was 11°, in run velocity 25.93 m·s–1 and take off  

velocity perpendicular to the ramp was 2.5 m·s–1 in ac-

cordance with Schmölzer and Müller (2005).

As curve S was selected an abscissa between the ori-

gin of the coordinate system O
xy

 and the position of the 

center of mass of the ski jumper system at the instant 

5.5 s according to the equations of motion (2) solution. 

The trajectories of the reference and optimized jumps 

were compared with the K = 125 m jumping hill profi le 

in Frenštát p. Radhoštěm (Czech Republic) and appro-

priate lengths of the jumps were evaluated. The projec-

tion of the jumping hill profi le on the vertical plane, 

including the coordinate system O
xy,

 was based on the 

measurement of the coordinates of surface points on 

the jumping hill by using the Leica TCR307 theodolite.

RESULTS AND DISCUSSION

The fi gures show the reference and optimal time 

dependence of the control variables (Fig. 1), aerody-

namic drag and lift forces (Fig. 2), magnitude of the ski 

jumper system’s center of mass velocity vector and it’s 

vertical and horizontal components (Fig. 3). The opti-

mal correction of the fl ight course increases the jump 

length from 100.7 m for the reference jump to 117.7 m 

– i.e. a length increment of 17% (Fig. 4). It has been 

( ) ( ) ( ) ( ) ( )3 4 1 0x y x yH T p v T p v T v T v Tx y
ψ ψν ν ∂ ∂= + = − + = ∂ ∂  .  

( )
( ) ( )

x

x y

v T
v T v Tx y

ν ψ ψ= ∂ ∂+
∂ ∂

. 
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Fig. 1
Optimized and reference time variations of angles  , ! and V

Fig. 2 

Optimized and reference time variations of drag and lift forces

TABLE 1 

The reference jump angle of attack ( ), body ski angle (!) and ski opening angle (V) for model of the ski jumper at 

given times t. The angles correspond to the mean values found in the fi eld. The values were selected from Schmölzer 

and Müller (2002)

t [s] 0 0.2 0.4 0.7 1.0 1.2 1.5 2.0 4.0 5.5

 
0
 [°] 0 7 14 25 30.2 32.6 34.8 36.1 37.1 36.2

!
0
 [°] 63 49 43 26 16.4 13 10.4 10.3 10.8 9.3

V
0
 [°] 0 13 20 31 35 35 35 35 35 35
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discovered that a ski jumper should minimize angles 

  and ! (Jošt, Kugovnik, Strojnik, & Colja, 1997; Seo, 

Murakami, & Yoshida, 2004; Virmavirta et al., 2005), 

the remaining angle V should, however, be maximized 

for some time in the interval from 0 s to 0.5 s, while the 

optimal angle V should gradually approach the upper 

bound of the set U r, containing the acceptable values 

of angle V. As found by Seo, Murakami and Yoshida 

(2004), the ski opening angle should be increased in the 

fi rst half of the fl ight, and than kept at a constant value. 

In terms of aerodynamic forces, it is particularly op-

timal to minimize the drag force within 0.5 s, while at 

2–3 s, the value of the drag approaches the value cor-

responding to the reference jump, later again becoming 

a strong requirement to minimize the drag force. The 

best option is to minimize the lift force up to 0.5 s and to 

subsequently maximize (Fig. 2). In contrast to the study 

of Schmölzer and Müller (2005), Fig. 2 shows a local 

minimum of the aerodynamic drag and lift forces. 

The difference between the x-th resp. the y-th 

components of the velocity vector gradually increas-

es and, for example, at the moment 3 s extends to 
1

,opt 1.5 m sx xv v ++ # =
 resp. 

1
,opt 2.5 m sy yv v ++ # + =

. 

The relative diff erences in the y-th component of the 

velocity vector are remarkably bigger that in the x-th 

component. Initially it is v
opt

 > v, afterwards v
opt

 < v. This 

changeover is due to the new directive to maximize the 

lift with some delay, similarly as in the increasing infl u-

ence of the optimization to the vertical component of 

the velocity vector. According to Jošt, Kugovnik, Stro-

jnik and Colja (1997) in order for the jump to be per-

formed successfully, it is right to maximise the resultant 

speed in the fi rst part of the fl ight and to maximize the 

x-th component of the velocity vector during the entire 

time of the fl ight, unlike shown in Fig. 3, in particular 

in the fi rst part of the fl ight. 

Meile et al. (2006) stated that current computer fl uid 

dynamics tools do not seem to be capable of simulating 

the aerodynamic forces acting on the ski jumper system. 

Thus, the experimental investigation of the aerodynamic 

forces remains, so far, essential.

Fig. 3 

Optimized and reference time variations of the magnitude, vertical and horizontal components of the ski jumper’s 

center of mass velocity vector

Fig. 4 

Flight path for the reference and optimized jump ex-

ecution in the case of Frenštát p. R. Jumping Hill (K =

= 125 m)



Acta Univ. Palacki. Olomuc., Gymn. 2009, vol. 39, no. 3 67

The ways of how to achieve the optimal time course 

of fl ight position angles can distinctly diff er depending 

on the athlete – compare the gold medallist Amman and 

the silver medallist Malysz (Schmölzer & Müller, 2005). 

This means that the reliability of the optimization stud-

ies could be improved by having data for a deeper insight 

into the aerodynamics of the individual athlete. There 

exist several strategies of how to solve the changes at 

the angular momentum at the early fl ight phase (Hilde-

brand, Drenk, & Müller, 2007). 

CONCLUSION

The solution of the optimization problem with three 

control variables allowed for the correction of the refer-

ence fl ight style to maximize fl ight distance with respect 

to control limits on control variable values. Unambigu-

ous directives to minimize the angle of attack and body 

angle relative to the skis correspond to the require-

ment to minimize the aerodynamic drag primarily in 

the fi rst part of the fl ight (Fig. 1). From the viewpoint 

of aerodynamics, it is interesting to note that, during 

the fl ight, gaining grain aerodynamic lift in this sense 

that is becoming majoritarian, that is, to maximize lift 

demand above all by increasing the ski opening angle 

compared with the reference values (Fig. 1). Even in the 

middle part of the fl ight, the optimal aerodynamic drag 

force is slightly higher than the reference drag as can be 

seen in Fig. 2. In terms of kinematics, the trajectory of 

the ski jumper system’s center of mass is straightening 

compared to the reference trajectory approximately at 

a distance 60 m from the jumping hill edge, where the 

diff erence of the height above the jumping hill exceeds 

0.5 m. 

If, in the future, correct work contrary to the present-

ed study maps the fl ight style of the exact ski jumper, 

data collection might involve the following steps:

>? mathematical modeling of the selected jump-

ing hill profi le, for example on the basis of topography 

measurement,

>? the setting of admissible intervals of control 

variables that respect the ski jumper’s mental and mo-

tor abilities,

>? determination of the dependence of aerody-

namic drag and lift forces acting on the ski jumper sys-

tem on the fl ight via regression analysis of experimental 

data.
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PONTRJAGINŮV PRINCIP MAXIMA 
A OPTIMALIZACE STYLU LETU 

VE SKOKU NA LYŽÍCH
(Souhrn anglického textu)

 

Existuje několik faktorů (počáteční poloha skokana 

na lyžích a její změny v průběhu přechodové fáze letu, 

velikost a směr vektoru rychlosti pohybu těžiště skoka-

na, velikost aerodynamické odporové a vztlakové síly 

apod.), které určují trajektorii soustavy skokan + lyže 

a tím i dosaženou délku skoku. Cílem studie je předsta-

vit metodu řešení úlohy optimálního řízení letové fáze 

skoku na lyžích se třemi omezenými řídicími proměn-

nými – úhel náběhu ( ), úhel trup vs. lyže (!), úhel 

levá lyže vs. pravá lyže (V) – na základě Pontrjaginova 

principu maxima. Kritériem optimality byla zvolena 

délka skoku. Jako zdroj informací o závislosti veličin L 

(lift area) a D (drag area) na řídicích proměnných byla 

použita převzatá regresní funkce s tabelovanými regres-

ními koefi cienty. Srovnány byly trajektorie referenčního 

a optimalizovaného skoku s profi lem můstku K = 125 m 

ve Frenštátě pod Radhoštěm a stanoveny odpovídající 

délky skoku, aerodynamické odporové a vztlakové síly, 

velikosti rychlosti pohybu těžiště soustavy skokan + lyže, 

její vertikální a horizontální složky. Aby byly respekto-

vány reálné polohy v letové fázi skoku, přípustné hod-

noty řídicích proměnných náležely v každém okamžiku 

ohraničené množině. Bylo zjištěno, že skokan by měl 

na ohraničené množině přípustných hodnot řídicích 

proměnných minimalizovat úhly   a !, úhel V naopak 

maximalizovat. Prodloužení skoku vlivem optimalizace 

je 17 %. Pro možnost dalšího výzkumu je nezbytné vyu-

žití regresní analýzy pro experimentální data při určení 

závislosti aerodynamických sil působících během letu 

na soustavu skokan + lyže. To platí také pro aplikaci 

kontrolních proměnných vztahujících se k základním 

fyzickým a psychickým vlastnostem skokanů na lyžích.

Klíčová slova: počítačová simulace, skokan na lyžích, opti-
mální řízení, aerodynamické síly.
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